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Abstract

The inhomogeneous non-equilibrium molecular dynamics (NEMD) scheme is applied to model phonon heat conduction

in thin nickel films. The electronic contribution to the thermal conductivity of the film is deduced from the electrical conductivity through
the use of the Wiedemann-Franz law. At the average temperature of T =300 K, which is lower than the Debye temperature @1,= 450 K,
the results show that in a film thickness range of about 1-—11 nm, the calculated cross-plane thermal conductivity decreases almost linearly
with the decreasing film thickness. exhibiting a remarkable reduction compared with the bulk value. The electrical and thermal conductivi-
ties are anisotropic in thin nickel films for the thickness under about 10 nm. The phonon mean free path is estimated and the size effect on
the thermal conductivity is attributed to the reduction of the phonon mean free path according to the kinetic theory.

Keywords: nanoscale, nickel films, thermal conductivity, electrical conductivity.

To analyze the thermal behavior of nanosize ma-
terials and nanoelectronic devices, new physical mod-
els on the atomic scale are required. Recently, many
experimental and theoretical studies have been applied
to predict or measure the thermal conductance of
nanowires, superlattices, thin films, and periodic

(1=5] " Recent progress in micro-

thin film structures
and nanoscale technologies has made it possible to uti-
lize very thin films for a variety of applications. Nick-
el films are of special interest because of their practical
applications in ferromagnetism and their superparam-
agnetic behavior in microelectronic devices and micro-
actuators'® 7. The performance and reliability of
these devices strongly depend on the heat conduction
in the thin films, so the thin film thermal conductivi-
ty and the heat transport mechanism must be well un-
derstood. Recent experimental techniques, such as
near-field microscopy[g'g], allow the investigation of
heat transfer at small scales, but the spatial resolution
is still larger than 50 nm, which remains too large
when the typical length of interest is a few nanome-

ters.

Thermal transport in metals can be analyzed
from knowledge of the phonon heat transfer and the
electronic heat transfer. In pure bulk metals, the
phonon heat transfer will be completely swamped by
(10 But in
thin metallic films, the electronic contribution to the

the much larger electronic heat transfer

[1i]

thermal conductance decreases dramatically and

the thermal conductivity due to phonon heat transfer
also decreases!'?!.

Numerical simulations can be used to predict the
thermophysical properties of materials at nanoscales
that cannot be experimentally measured. Molecular
dynamics (MD) method is a valuable tool for study-
ing the atomic scale properties of solids!***!. Classi-
cal MD methods simulate only the interaction between
atomnic nuclei, which means that the heat transfer due
to the phonon-phonon interactions is taken into ac-
count. The success of MD simulation depends upon
the accuracy of the inter-particle potential model used
in simulation. This is not a problem for insulators or
semiconductors in which the electronic heat transfer is

negligible. Over the last two decades, several types of
[15]

(7

potential model, such as tight-binding theory
pseud&potential“é], empirical potential function
and embedded-atom method (EAM)!'®!, have been
developed to describe the inter-atomic interaction of
metals. In transition and noble metal systems, the
EAM model, originally proposed by Daw and Baskes
in 1984, has been widely used to describe the ener-
getic of metallic systems. Four different versions of
EAM model provided by Johnson“gj, Meil2®,
Cai®! and Pohlong'??! have hitherto been developed
to employ different embedded functions,
density functions and two-body interaction functions.

electron
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Among them, the versions of Johnson, Mei and Cai
agree better with the data transformed from the ex-
periments of the isobar heat capacity of Cu, Ni and
Ag[23'24] . Therefore, the version of Cai is selected for
computing thermal conductivity due 1o phonon-
phonon interactions of nickel in the present study.
The formulae and parameters of the EAM version are

the same as those presented in the paper of Cai and
yel?t!

The thermal conductivity measurements are
more difficult and inherently less accurate than elec-
Therefore, the

Wiedemann-Franz law is often used to convert electri-

trical resistivity measurements.

cal conductivity values into estimates of the thermal

[10]  However, when the metallic film

conductivity
thickness is lower than 50 nm, thin film electrical
conductivity is also extremely difficult to measure.
Therefore, for very thin films, the free-electron mod-
el, Boltzmann transport equation (BTE), quantum-
mechanical treatment and the ab initio relativistic
Korringa-Kohn-Rostoker (KKR) method are used to
estimate the electrical resistivity of thin metallic
films 25287

In this study, we will calculate the electrical
conductivity using the Kubo linear-response formal-
ism, with the Wiedemann-Franz law uscd to relate
these values to the electronic component of the ther-
mal conductivity of the films. Estimated by using
NEMD method and the elementary kinetic theory,
the lattice contribution to the thermal conductivity is
added to the electronic component to obtain the cross-
plane thermal conductivity of the materials.

1 Electrical conductivity

In the independent-electron approximation, ac-
cording to a linear-response treatment, the Hamilto-
nian for an electron in the presence of a semiclassical
electromagnetic field characterized by vector potential
A. Thus!®!

H=[r vl [ Grara b

E[H0]+ [H1]9 (1)

where p is the momentum operator, V(r) is the po-

tential in the absence of an applied external field,
Ho=p2%/2m* + V(r) is treated as the unperturbed
Hamiltonian and m * is the effective electron mass.
In addition, assuming that the electrons are coupled
to some source of dissipation, e.g. electron-electron
interactions, electron-phonon interactions, magnetic

scattering, etc., we introduce a relaxation time r
(v =1/t is the corresponding relaxation rate). The
equation of motion for the density matrix of electrons
is

%a%) +i[H(2),p()] = 7v[p(t) = pe(2)].

A 2)
Here, p,. is the quasiequilibrium density matrix and
o is the chemical potential. According to the linear-
response theory, the density matrix can be approxi-
mated by b%i)(o) + ‘(‘)(1)’ where b(” is linear in the
perturbation due to Hy. From Eq. (2), the off-diag-
onal components of the density matrix are of the form

L o- ) i = g, — 1Y A )
<z|p“’|]>:f_ff . .y<z|H1|]>,

i €y —w — 1
(3)

where ¢;, =€, — ¢,, f; is the Fermi-Dirac occupation

factor, |i) and |j) are eigenstates of Hy.

The induced current j g is obtained by Tr | b]A .
In general, the induced current is composed of two
parts, one is a diamagnetic contribution arising from
the change in the current operator due to the vector
potential, and the other is a paramagnetic term from
the off-diagonal element in the density matrix. The
electrical conductivity is calculated from jq=
o(w)E(w)=0(w)(iw/c)A(w). Thus

-2 — 3

ie N 1 fi—f &, — 17
==+ — —
o(w) m*w[ﬂ .in*; € €; —w 1Y
x| (1 pglj) |2], (4)

where (i | pglj) is the matrix element of the momen-
tum operator along the applied field. The real part of
the conductivity in Eq. (4) now becomes

e’ fi — 1 Y
(771*)2.(22 g (e - w)+ 7t
X1 Gilopglgy 12, (5)

Res(w) =

The diamagnetic term in this case is exactly can-
celed by a piece from the paramagnetic term. This
can be shown by invoking the well-known Thomas-

30]

Reiche- Kuhn sum rulel®”), which demonstrates that

the sum is independent of the choice of 7,
2 | py 12
- =-1, 6
- Z - (6)

where i and j denote all the quantum numbers of a
system, and the matrix elements are summed over all
states j. The matrix elements of the momentum op-
erator can next be evaluated between states | i) =
|k, m) and |j)=I|k", m ). The momentum opera-
tors along the y and x directions can be obtained re-
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spectively :
<l ‘ ﬁy l J> = (' 1 h)kyb\k,k'é\m,m/’
s iy 2 _mm
<1|P1|j>‘( 1h)d"127’n,2

L= (=D 18 ()

The difference in the momentum matrix ele-
ments arises primarily from the loss of translational
invariance along the & direction because of the pres-
ence of surfaces. The in-plane de conductivity may be
obtained from Eq. (7),

(1)) ny ’

where o= nge’t/m " is the Drude conductivity,
is the relaxation time, n (d) is the film electron den-
sity and ng = k;/31t2 is the bulk electron density.
However, the intersubband coupling given in Eq. (7)
leads to a very different cross-plane conductivity
which is given by

0w —=>0) n(d

oo ngo
”C
48 2, 2 2
-~ 55 3 3Rez m (nC - m*)
ln, .ol
— wptanv, if m is even, (9)
veotv, if m is odd,

where I' = 7/ ¢ is the level broadening in units of the
zero-point energy, n. = Int{ kpd/n] (Integer) and
v=(xm/2)(1—il'/m?)'?. When the in-plane mo-
mentum is discrete, Eq. (9) will be consistent with
the result of small metallic particles presented in Ref.

[29].

For large d (d>>0.18 nm), or equivalently for
n.>1, in which case the summation over n in the
second term in Eq. (9) is approximated by an inte-

gral using Euler-Maclaurin summation formulal®"!

8 =6 (1 - 37)
. [*[Q + 2e>2/§/ﬂ( tsin{xz) + }Qcos(rt)) :|dy,
(10)
where ¢ = [yz + (y4 + 32)1/2]1/2, B="hlepr =
2/kpl, and x = {/d ([ is the electron mean free
path). Combined Egs. (10), (9) and (8), the rela-
tionship between the in-plane dc o,, and cross-plane
dc o,, is B
6.olw—>0) = o’xv(w—>0)—A'0'0. (11)
As shown in Eq. (11), the electrical conductivity of
metallic films is anisotropic. However, many research

works are mainly focused on the in-plane electrical

conductivity[zs_zg] .

2 Electronic heat transfer

For pure metals at room temperature, from the
elementary kinetic theory[32'33] and the equivalent
thermal resistance schemes given in Ref. [12],

R (12)
Ao Ao
Here, A, is the thermal conductivity associated with
the conduction electrons in a material and A, is the
thermal conductivity due to electron-phonon interac-

tions.

In general, A.is deduced from the electrical con-
ductivity through the use of the Wiedemann-Franz
law. Some researchers! 7] expect it to be also fit
for the thin metallic films. This is because it can be
only invalidated by inelastic electron scattering pro-
cesses. Moreover, from a transport point of view,
these thin films differ from the bulk materials primar-
ily by the elastic electron and phonon scattering cen-
ters associated with disorders in the film structure.
Therefore,

A o (13)

Ap Oy

In thin metallic films, considering the influence
of grain boundary scattering, while the grain size in-
creases with the thickness, the average relaxation
time in the film can be obtained by Matthiessen’ s

rulet10-38]]

% = rlh + %; , (14)
where 7y, is the electron relaxation time of the bulk
crystal, wvpis the electron velocity equal to the Fermi
velocity and d is the average in-plane grain diameter
in the film. For pure nickel, in the second order of
the perturbation theory in pseudo-potential and the
hybridization potential, the inverse relaxation time

1
Ty 15[39]

ol =, . (15)
Here, the first contribution is the Ziman’s relaxation
time'*®! from the scattering of the electrons on ions
and the second contribution is the Mott’ s relaxation

(at], Considering the grain boundary scattering,

(1]

time
Kumar and Vradis proposed a correlation on the
in-plane thermal conductivity of thin metallic films

from BTE,
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A 1+ B/ 8 B+o
B—di, B+o>1. (16)

Here, d is the film thickness, 8 = d/A,.. A, is the
electron mean free path and d, is the average grain
diameter. Nath and Chopral*?! believed that the grain
diameters were of the order of 100 angstroms for the
film deposited at room temperature. Considering
boundary scattering and grain boundary scattering,
Qiu and Tien'*¥ developed the following approxima-

tion
Ap _ 31, 7 7! .
A, [1+86+5a:\ , 6>1 (17)
with
__R B
T 1-R

Here, R is the reflection coefficient of the conduction
electrons striking the grain boundaries (0:<R=<{1).

3 Phonon heat transfer

To our knowledge, till now, no experimental
phonon thermal conductivities for metals are available
in literature. Therefore, only theoretical methods can
be used to evaluate the thermal conductivity due to
phonon heat transfer. For a pure metal, from the ele-
[32.33) and the equivalent ther-
mal resistance schemes given in Ref. [12],

1 1 1

— = T+ —. (18)
Aoh  Aphph  Aphe

mentary kinetic theory

According to the elementary kinetic theory,

Z,h 7 5h
_“eph Tph
lthPh Ne Aph—ph- (19)

Aph—e =

The electron velocity is taken equal 10 the Fermi
velocity v,=2.04 X 10° m+s™!, and the phonon ve-
locity is equal to the Vph =
5630 m*s '), The volume specific heat and the

phonon density are calculated from the Debye mod-
[45]
el'™,

sound velocity

The thermal conductivity due to phonon-phonon
interactions is estimated using non-equilibrium molec-
ular dynamics (NEMD) method with the embedded-
atom model (EAM). Fig.1 is the schematic diagram
for modeling steady-state heat conduction across thin
films. Nickel is an fcc metal with a lattice parameter
a equal to 0. 352 nm. The crystal ocrientation is
[100], {010], and [001], so the dimensions are

na, na, and na in the r, v, and z directions,

respectively. Periodic boundary conditions are used in
the y and = directions. In the x direction, the sys-
tem is confined between two hard walls at tempera-
tures Ty and T, respectively; the variety of film
thickness is modeled by changing the number of lat-
tice cells in the x direction. In order to model more
different thickness films, two groups of cases are
studied here: (a) the lattice cell numbers in three di-
rections are n, = 4—8 and n, = n, = 6, thereby the
number of atoms is N =576—1152; (b) n,=n,=4
and n, =10—30, with N =640—1920.

N~ IN
nall \__—:— _—:_\ v
: | - [
| n T, 1 Ty "
% - TN ’—_—\| ¥
n;N\'____ _ — =\

d = (4-30)a. j Layers

Fig. 1.

normal to thin nickel {ilms.

Schematic diagram of model system for heat conduction

As shown in Fig.1, the box is divided into sev-
eral layers along the x axis. The two hard walls are
maintained at T, = 350 K and T, =250 K. Simula-
tions are performed at constant density. The lattice
constant is a = 0. 352 nm, thus the film thickness
ranges of the two cases are (a) d =1.408—2.816 nm
and (b) d =3.520—10. 56 nm, respectively. There
are several methods to establish a temperature gradi-
ent in the system[46'47]. Here the stochastic method
in Ref. [46] is applied to simulate the hard walls,
treating them as hot wall and cold wall. The temper-
ature gradient value V T in the normal direction of the
film, and the effective thermal conductivity is deter-
mined according to Fourier’s law! ),
AEg in + AEg, o

2tA \VT |
where A is the area perpendicular to the heat flux and
d is the film thickness. Both the energy gain AE i,
and energy loss AE}, .., across the high- and low-tem-

Aph—ph = (20)

perature surfaces, respectively, are instantaneously
computed within every simulation step. Statistically,
the relative difference between AE, , and AE; ., is
less than 15% in our simulations.

Since the unit cell contains 4 atoms, the number
of atoms per lattice parameter in the x direction is e-
qual to 4n,n,, which is defined as a layer of atoms.
Because the system undergoes nonequilibrium irre-
versible heat flow, local thermodynamic equilibrium
should be established throughout the system when the
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simulation reaches the ultimate steady state, which
guarantees the validity of Eq. (20). In the present
simulations, the layer number is about 4—30, the
number of atoms in each layer is about 58—144, and
the total simulation time is about 0.072—0. 143 ns;
thus the number of phonon-phonon scattering events
N.= 3thsim/rph[49] in each layer can be of the order
of 10°—10°, which is adequate for restoring local
thermodynamic equilibrium. For a set of N; atoms in
each layer, the average temperature is directly related
to the kinetic energy

_ m v 2
TMD - 3N1k3<1%{,\]v'>’ (21)

where { ) denotes the statistical averaging over all
of the simulation time, %y is the Boltzmann constant,
m is the atomic mass, v; is the velocity norm of each
atom 7z, and N, is the number of atoms in layer ;.
Eq. (21) is commonly used in MD simulations; how-
ever, it is a classical formula valid only at very high
temperature ( T > @p). In the present study, the
system average temperature (T = 300 K) is lower
than the Debye temperature (@p=450K), it is nec-
essary to apply a quantum correction by introducing

L49] " As suggested by

appropriate phonon dispersion
Feng et al.'*®), the real local temperature T can be

deduced from Ty, by solving the equation
3NAsTw = | "Diw)n(w, T) ide, (22)
0

where D is the density of states, » is the phonon oc-
cupation number, and w is the phonon frequency. At
the same time, the temperature gradient in Eq. (20)
must be corrected as well.

4 Results and discussion

Compared with other metals, nickel has a small-
er electrical conductivity, so the electronic component
of the thermal conductivity is also lower!'2). At room
temperature ( T = 300 K), the thermal conductivity
of bulk nickel is A =91.0 W-m '+ K 321 Kumar
and Vradist'!! assumed that d==d, was a logical one
according to Nath and Chopra!*?). The values of R
reported in the literature are compiled by Qiu and
Tien'*!. R is chosen to be 0.19'%7, and we choose
B =3.0 to match Kumar and Vradis’ data. Egs.
(11), (13), (14), (16) and (17) are used to calcu-
late the thermal conductivity due to electronic heat
transfer in the nickel films. Eqgs. (11) and (13) de-
note that the electrical conductivity and the thermal
conductivity on the in-plane and cross-plane are

anisotropic because of the discrete nature of the states
in the film. The results in Fig.2 show that the ther-
mal conductivity increases with the increasing film
thickness, the cross-plane conductivity is less than the
in-plane conductivity for the film thickness under
about 10 nm, and the difference between the in-plane
and cross-plane thermal conductivities decreases with
the increasing film thickness.

80

(=N
(=

o
[=3

A (W LK
=

0 20 40 60 80 100
d (nm)

—— Present (d/d, = 1), cross-plane
Kumar & Vradis (d / d, = 1), in-plane
----- Present (d / dg —3.R = 0.19), cross-plane
------- Qiu & Tien (d/d, =3, R=0.19), in-plane
Present (d / d, = 2), cross-plane
"""" Kumar & Vradis (d / dg =~ 2), in-plane

Fig. 2. The in-plane and cross-plane thermal conductivity due to

electronic heat transfer as a function of film thickness.

Fig.3 shows the calculated temperature profiles
for a film with thickness d &7.04 nm. The local in-
stantaneous temperature calculated in each layer fluc-
tuates more slightly with the increasing overall simu-
lation time. However, computation of temperature
distribution in nickel films is rather time consuming
with the increasing overall simulation time. Fortu-
nately, the temperature profiles can be improved by
prolonging the sampling time of temperature statistics
or by averaging the intermediate temperature pro-
files. As shown in Fig. 3, the solid lines are the aver-
age and linear fitting. By averaging the four profiles,
local temperature fluctuation is effectively reduced.
With the temperature quantum correction and the
gradient of linear fitting, the thermal conductivity
due to phonon-phonon interactions can then be calcu-
lated according to Eq. (20). Taking phonon-electron
interactions into consideration, Eq. (19) is used to
calculate the thermal conductivity A, . before Ay o is
known. Fig. 4 shows the variation of the thermal
conductivity due to phonon heat transfer, phonon-
phonon interactions and phonon-electron interactions
with the film thickness.
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340} 2 t=0.072ns
o t=0.095ns
3201 at=0.119ns
g v¢=0.143ns
2 300 Linear fitting
&~ Average
280

n,=n=4,n=20
260F 4=7.04 nm

-3 3 2 -1 0 1 2 3 4
x (nm)

Fig. 3. Temperature distribution in the film and the influence of

simulation time (d=7 nm).

14
8 Agone NEMD results
12 T © Ay» Elementary kinetic theory
= 10} 2 2on = Agtopt Apte / oot gn)
M = = a |
X g % n=n=4 )
E . L
g "h=n=6
< 4} o°
a o °
2 o o A - & 4
a8 8 g .A
0 2 4 6 8 10 12
d (nm)

Fig. 4.
NEMD simulated results for various film thicknesses. The average

Thermal conductivity due to phonon heat transfer and

temperature is 300 K and the temperature gradient is 100 K.

It can be seen from Fig. 4 that it is difficult to
extrapolate the curve A, to infinite thickness to
give the bulk value of the thermal conductivity of
nickel due to phonon-phonon interactions. A relation
between the bulk value and the value obtained from

Vis used to ob-

MD simulation proposed by Ercolessit™!
tain the bulk value of the thermal conductivity of

nickel  due to interactions

(A phpn( 82 Thus
29.70W - m™ !+ K!
< Aphpn(b) < 30.83W . m™ - K1 (23)

phonon-phonon

Using the elementary kinetic theory, the bulk
thermal conductivity due to phonon heat transfer can
be calculated

7.627W -m '+ K™
< Am(8) <7.700W - m™t - K. (24)

From the result in Eq. (24), the ratio of the
thermal conductivity due to phonon heat transfer to
the total thermal conductivity is about 8.5% . These
results are realistic, as nickel is a good electric con-
ductor. It would probably be less than that for other
metals that have a larger electrical conductivity.

The simplest theory of understanding the ther-
mal conductivity due to phonon heat transfer of thin

52]

films is the phonon gas kinetic theory!®?. Regarding

the heat carriers (i. e. phonon) in nickel as gas
molecules, the lattice thermal conductivity is deter-
mined by

1
3

where Cv is the heat capacity per volume, v is the

k = val, (25)

sound velocity, and [ is the phonon mean free path
(MFP). The bulk phonon MFP in nickel can be ob-
tained from the kinetic theory with the Debye ap-
proximation. At T =300 K, a possible bulk MFP is
estimated to be [ =1.199—1. 210 nm according to
Egs. (24) and (25). Accordingly, here I — d is de-
rived and the film thickness can be taken as the effec-
tive phonon MFP in the thin films. Therefore, Eq.
(25) gives the relation Accd, and this is in good a-
greement with the calculated results with the film
thickness less than 6 nm (Fig.5). This analysis has
attributed the conductivity size effect to that the film
thickness is at the same order of magnitude as the
phonon MFP in nanoscale thin nickel films.

at T=300K
i ° o
B4 3l —— Linear fitting
g '
2 2} A=03504-0.01 .
=

d (nm)

Fig. 5. Thermal conductivity due to phonon heat transfer and the

theoretical results for various film thicknesses.

From the results in Figs. 2 and 4, the thermal
conductivity of thin nickel films can be calculated,
and the results are shown in Fig. 6. Compared with
the experimental value of thermal conductivity of bulk
nickel at T=300K, 91 W-m 'K !, the 3.520—
10.56 nm thin film cross-plane thermal conductivity is
about 2—5 times lower than that of bulk nickel,
showing a remarkable boundary scattering effects,
grain boundary scattering effects and size effects.
However, in a nickel film thickness range of 0.4—
8 um, the experimental thin film thermal conductivi-
ty does not show apparent reduction®. Compared

48

with nanoscale thin silicon films/*®), the reduction of

thermal conductivity in nanoscale thin metallic films
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is less only because that the phonon heat transfer will
be completely swamped by the much larger electron
heat transfer heat in metals.

91W.m '.K~!. Bulk experiments

92 i
90% |
~ 50 /ﬁ////ﬁ
’."4 401 /
E. 30¢ _O~A’ph
z =)
< W F = Ad/d,=3.R=0.19)
jof oA AutAdd/d =)
—4= A= AytA (d/d,=3. R=0.19)
R 6 g 10 12
d (nm)

Fig. 6. Total thermal conductivity as a function of the film thick-

ness, showing size, grain scattering and boundary effects.

5 Conclusion

The inhomogeneous NEMD scheme is appropri-
ate for modeling heat conduction dve to phonon-
phonon interactions in nanoscale thin nickel films. In
this paper, the thermal conductivity due to phonon
heat transfer has been calculated by MDD simulation
and the elementary kinetic theory, the electronic con-
tribution to the thermal conductivity of the film has
been deduced from the electrical conductivity through
the use of the Wiedemann-Franz law. The electrical
conductivity of thin nickel films has been estimated
from the Kubo linear-response formalism. We find
that the cross-plane thermal conductivity of nanoscale
thin nickel films has remarkable boundary scattering
effects, grain boundary scattering effects and size ef-
fects, which considers electrons only at the Fermi lev-
el and at a temperature lower than the Debye temper-
ature. In a film thickness range of 1.408—10.56 nm,
the thin film cross-plane thermal conductivity is sev-
eral times lower than that of bulk nickel at corre-
sponding temperatures and decreases almost linearly
as the film thickness is reduced. The electrical and
thermal conductivities are anisotropic in thin nickel
films with thickness under about 10 nm because of the
discrete nature of the states in the system. The
phonon size effect occurs because the effective phonon
MFP is reduced when the film thickness is compara-
ble to or even smaller than the phonon MFP in bulk
nickel. The presence of columnar microstructures,
defects,
dislocations may also further influence the film ther-

mal and electrical Conductivity[54'55].

microcracks, microgrooves, impurities and
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